Math, asked by celin1939, 11 months ago

Prove that an=Sn-S(n-1) in AP

Answers

Answered by austinpaulmail
0

Answer:

First u prove it

Step-by-step explanation:

Then I will.prove

Answered by mahitiwari89
1

use relation of n^{th}  term and relation of sum of n terms

Step-by-step explanation:

a_{n}= a+(n-1)d the n^{th} term relation

S_{n}=\frac{n}{2}[2a+(n-1)d] is the relation for sum of n terms

S_{n-1}=\frac{n-1}{2}[2a+(n-1-1)d] is the relation for sum of (n-1) terms

now, S_{n}-S_{(n-1)}=\frac{n}{2}[2a+(n-1)d]-\frac{n-1}{2}[2a+(n-2)d]

After open some brackets,

                             =an+\frac{n^{2}d}{2}-\frac{nd}{2}-[an-a+\frac{(n-1)(n-2)d}{2}]

                             =an+\frac{n^{2}d}{2}-\frac{nd}{2}-[an-a+\frac{(n^{2}-3n+2)d}{2}]

                             =an+\frac{n^{2}d}{2}-\frac{nd}{2}-[an-a+\frac{n^{2}d}{2}-\frac{3nd}{2}+d]

                             =an+\frac{n^{2}d}{2}-\frac{nd}{2}-an+a-\frac{n^{2}d}{2}+\frac{3nd}{2}-d

After cancellation same terms having apposite signs,

                             =a+dn-d

or,     S_{n}-S_{(n-1)}=a+(n-1)d=a

                   

Similar questions