prove that angle AOX AND BOY =90
Attachments:
Answers
Answered by
4
A/q,
In ΔOPA and ΔOCA,
OP = OC (Radii of the same circle)
AP = AC (Tangents from point A)
AO = AO (Common side)
∴ ΔOPA ≅ ΔOCA (SSS congruence criterion)
⇒ ∠POA = ∠COA … (i)
Similarly,
ΔOQB ≅ ΔOCB
∠QOB = ∠COB … (ii)
Since POQ is a diameter of the circle, it is a straight line.
∴ ∠POA + ∠COA + ∠COB + ∠QOB = 180 º
From equations (i) and (ii),
2∠COA + 2∠COB = 180º
⇒ ∠COA + ∠COB = 90º
⇒ ∠AOB = 90°
Ab is a line
So <AOB = 180
Angle AOB = angle POA +Angle AOC+COB+OCQ
Angle AOB=<POA+<OBQ+90° (angle aoc +angle cob = 90° )
180 =<POA+<OBQ+90
180-90= <POA+OBQ
<POA+<OBQ = 90°
Hence proved
In ΔOPA and ΔOCA,
OP = OC (Radii of the same circle)
AP = AC (Tangents from point A)
AO = AO (Common side)
∴ ΔOPA ≅ ΔOCA (SSS congruence criterion)
⇒ ∠POA = ∠COA … (i)
Similarly,
ΔOQB ≅ ΔOCB
∠QOB = ∠COB … (ii)
Since POQ is a diameter of the circle, it is a straight line.
∴ ∠POA + ∠COA + ∠COB + ∠QOB = 180 º
From equations (i) and (ii),
2∠COA + 2∠COB = 180º
⇒ ∠COA + ∠COB = 90º
⇒ ∠AOB = 90°
Ab is a line
So <AOB = 180
Angle AOB = angle POA +Angle AOC+COB+OCQ
Angle AOB=<POA+<OBQ+90° (angle aoc +angle cob = 90° )
180 =<POA+<OBQ+90
180-90= <POA+OBQ
<POA+<OBQ = 90°
Hence proved
ShivPriya:
ok
Answered by
0
Step-by-step explanation:
Relax ∠ABC=180−∠CBN
Then angle $$AOC=360- \angle CBA-\angle OAB-\angleO CB$$
Then ∠AOC=360−115−115 (Gven angle CBN =65)
So ∠AOC=130
0
Similar questions