Prove that angle boc =180-angle A
Attachments:
Answers
Answered by
13
Given that ΔABC, BD⊥ AC and CE ⊥ AB.
To prove ∠BOC = 180° - ∠A.
Proof :
Given BD⊥ AC
∴ ∠BDA = 90°.
Given CE ⊥ AB
∴ ∠CEA = 90°
In Quadrilateral AEOD
∠A + ∠AEO + ∠EOD + ∠ADO = 360°
∠A + 90° + ∠EOD + 90° = 360°
∠A + ∠EOD = 360° - 180° = 180°
Since ∠EOD = ∠BOC ( vertically opposite angles)
∠A + ∠BOC = 180°
∠BOC = 180° - ∠A.
_____________________________________________________________
I HOPE THIS HELPS YOU
To prove ∠BOC = 180° - ∠A.
Proof :
Given BD⊥ AC
∴ ∠BDA = 90°.
Given CE ⊥ AB
∴ ∠CEA = 90°
In Quadrilateral AEOD
∠A + ∠AEO + ∠EOD + ∠ADO = 360°
∠A + 90° + ∠EOD + 90° = 360°
∠A + ∠EOD = 360° - 180° = 180°
Since ∠EOD = ∠BOC ( vertically opposite angles)
∠A + ∠BOC = 180°
∠BOC = 180° - ∠A.
_____________________________________________________________
I HOPE THIS HELPS YOU
Similar questions