Prove that any positive integer is of the form 8q+1,8q+3,8q+5,8q+7
Answers
Answered by
2
Step-by-step explanation:
From the above cases 8q,8q+2,8q+4,8q+6 are divisible by 2 and hence are even integers. But 8q+1,8q+3,8q+5 and 8q+7 are odd integers and are not divisible by 2. Hence,we can say that any positive odd integers are of the form 8q+1,8q+3,8q+5,8q+7 for some integer q.
Hope you got the answer
please Mark me as a Brainliests..
Similar questions