Prove that any to side of a triangle are together greater than twice the median draw to the third side.
Answers
Answered by
13
Hello Dear ✔️✔️↙️↙️
Given: In triangle ABC, AD is the median drawn from A to BC.
To prove: AB + AC > AD
Construction: Produce AD to E so that DE = AD, Join BE.
Proof:
Now in ADC and EDB,
AD = DE (by const)
DC = BD (as D is mid-point)
ADC = EDB (vertically opp. s)
Therefore,
In ABE, ADC EDB (by SAS)
This gives, BE = AC.
AB + BE > AE
AB + AC > 2AD (AD = DE and BE = AC)
Hence the sum of any two sides of a triangle is greater than the median drawn to the third side.
I hope it's helps you Mark as Brainliest answer And heart ♥️the Answer...
Attachments:
Similar questions