Math, asked by marvellyneranee, 10 months ago

prove that... anyone please help​

Attachments:

Answers

Answered by Anonymous
0

Step-by-step explanation:

 \sf 2cos^2 \theta + \dfrac{2}{1 + cot^2 \theta} = 2

Now let's consider LHS

 \Rightarrow \sf 2cos^2 \theta + \dfrac{2}{1 + cot^2 \theta} \\\\\\ \Rightarrow \sf 2cos^2 \theta + \dfrac{2}{cosec^2 \theta} \\\\\\ \Rightarrow \sf  \dfrac{2cos^2 \theta.cosec^2 \theta + 2 }{ cosec^2 \theta } \\\\\\ \Rightarrow \sf \dfrac{ 2cot^2 \theta + 2 }{ cosec^2 \theta } \\\\\\ \Rightarrow \sf \dfrac{ 2( 1 + cot^2 \theta) }{ cosec^2 theta } \\\\\\ \Rightarrow \sf \dfrac{ 2cosec^2 \theta }{ cosec^2 \theta } = 2 = RHS

Hence proved

Similar questions