prove that ap+q=0if f(x)=x3-3px+2pis divisible by g(x), =x2+2ax+a2
Answers
Answer:
Step-by-step explanation:
Prove that ap+p=0if f(x)=x3-3px+2pis divisible by g(x), =x2+2ax+a2
f(x) = x³ - 3px + 2p
g(x) = x² + 2ax + a²
Let say f(x) = g(x)q(x)
q(x) = (bx + c)
g(x)q(x) = (x² + 2ax + a²)(bx + c)
=> g(x)q(x) = bx³ + cx² + 2abx² + 2acx + a²bx + a²c
=> g(x)q(x) = bx³ + x²(c + 2ab) + x(2ac + a²b) + a²c
comparing with x³ - 3px + 2p
b = 1
c + 2ab = 0 => c + 2a = 0 => c = -2a
a²c = 2p => -2a³ = 2p => p = -a³
2ac + a²b = -3p => -4a² + a² = -3p => p = a²
ap + p = a(a²) + (-a³) = a³ - a³ = 0
or
ap+q=0if f(x)=x³-3px+2q
f(x) = x³ - 3px + 2q
g(x) = x² + 2ax + a²
Let say f(x) = g(x)q(x)
q(x) = (bx + c)
g(x)q(x) = (x² + 2ax + a²)(bx + c)
=> g(x)q(x) = bx³ + cx² + 2abx² + 2acx + a²bx + a²c
=> g(x)q(x) = bx³ + x²(c + 2ab) + x(2ac + a²b) + a²c
comparing with x³ - 3px + 2q
b = 1
c + 2ab = 0 => c + 2a = 0 => c = -2a
a²c = 2q => -2a³ = 2q => q = -a³
2ac + a²b = -3p => -4a² + a² = -3p => p = a²
ap + q = a(a²) + (-a³) = a³ - a³ = 0
Answer:
Hence the Proof...
..........................
..............