Math, asked by babuadiparana, 1 year ago

prove that area of a rhombus is equal to 1/2 ×sum of diagonals


babuadiparana: please give me answers quick exam is comming soon

Answers

Answered by yashucool
1
let us consider rhombus ABCD whose diagonals are AC AND BD whose intersection point is O
we know that diagonals of rhombus are perpendicular to each other .
now in ΔABC,BO IS PERPENDICULAR to AC
THEREFORE AREA of ΔABC = \frac{1}{2} ×BO×AC
similarly in ΔADC
area of ΔADC= \frac{1}{2} ×DO×AC
AREA OF RHOMBUS=area of ΔABC+area of ΔADC
                               = \frac{1}{2} ×BO×AC+ \frac{1}{2} ×DO×AC
                               = \frac{1}{2} ×AC[BO+DO]
                               = \frac{1}{2} ×AC×BD
Similar questions