Math, asked by RICHELLERYAN, 1 year ago

Prove that: 

Area of a trapezium ABCD = {¹/₂ × (AB + DC) × h} square units.

Answers

Answered by ANGELNIVI
2

<u><b><huge>HELLO<u><b><huge>

Area of a trapezium ABCD 

            = area (∆DFA) + area (rectangle DFEC) + area (∆CEB) 

            = (¹/₂ × AF × DF) + (FE × DF) + (¹/₂ × EB × CE) 

           = (¹/₂ × AF × h) + (FE × h) + (¹/₂ × EB × h) 



            = ¹/₂ × h × (AF + 2FE + EB) 

            = ¹/₂ × h × (AF + FE + EB + FE) 

            = ¹/₂ × h × (AB + FE) 

            = ¹/₂ × h × (AB + DC) square units.

            = ¹/₂ × (sum of parallel sides) × (distance between them) 

Answered by Anonymous
0
Let ABCD be a trapezium in which AB ∥ DC, CE ⊥ AB, DF ⊥ AB and CE = DF = h. Prove that: Area of a trapezium ABCD = {¹/₂ × (AB + DC) × h} square units.
Similar questions