Math, asked by thakkaraayush3113, 1 year ago

prove that area of equilateral triangle is root 3 by 4 into side square

Answers

Answered by SillySam
7
Let the each side be ' a ' units.

Semiperimeter = a+a+a/2

=3a/2

Area of triangle, using heron's formula

 = \sqrt{s(s - a)(s - b)(s - c)}

 = \sqrt{ \frac{3a}{2} ( \frac{3a}{2} - a)( \frac{3a}{2} - a)( \frac{3a}{2} - a) }

 = \sqrt{ \frac{3a}{2}( \frac{3a - 2a}{2}) ( \frac{3a - 2a}{2}) ( \frac{3a - 2a}{2} )}

 = \sqrt{ \frac{3a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2} }

 = \frac{a}{2} \times \frac{a}{2} \sqrt{3}

 = \frac{ {a}^{2} }{4} \sqrt{3}

=√3/4 a^2

Hence proved.
Answered by MonarkSingh
36
\huge\boxed{\texttt{\fcolorbox{Red}{aqua}{Hey Mate!!!}}}

<b><i><font face=Copper black size=4 color=blue>

Here is your answer in the attachment

\large{\red{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underline{\underline{\underline{Hope\:it\: helps\: you}}}}}}}}}}}}}}}
Attachments:
Similar questions