Math, asked by rajebul176, 8 months ago

Prove that area of triangle
Rut ovr. S(s-a)(s-b)(s-c)​

Answers

Answered by Anonymous
35

To Prove :-

  • Heron's formula .

Some formula used here are :-

  • (a+b)² = a²+b²+2ab

  • (a-b)² = a²+b²-2ab

  • Pythagoras - h² = b²+P²

  • a²-b² = [a+b][a-b]

Now we know the value of h

(refer to the attachment)

→ Area of triangle = \sf{\frac{1}{2} \times height \times base }\\

Putting the value of h here

\sf{Area \:  =  \:  \frac{1}{2}  \times a \:   \times  \frac{2}{a}  \sqrt{s(s - a)(s - b)(s - c)}}\\

\boxed{\sf{Area = \:  \sqrt{s(s-a)(s-b)(s-c)} }}\\

Attachments:
Answered by shadowsabers03
16

From the fig., we get the semiperimeter,

\longrightarrow s=\dfrac{a+b+c}{2}=x+y+z

Also we get,

  • x+y=b

  • y+z=c

  • z+x=a

So that,

  • s-a=y\quad\quad\dots(1)

  • s-b=z\quad\quad\dots(2)

  • s-c=x\quad\quad\dots(3)

In the fig., OA and O'A are angle bisectors drawn from the same point. Thus,

\longrightarrow\angle OAO'=90^o

Hence triangles OAD and O'AG are similar. So we get,

\longrightarrow \dfrac{r'}{x}=\dfrac{y}{r}

\longrightarrow r'=\dfrac{xy}{r}\quad\quad\dots(4)

From the fig. it is clear that the triangles ODB and O'GB are similar. So,

\longrightarrow \dfrac{r'}{x+y+z}=\dfrac{r}{z}

From (4),

\longrightarrow \dfrac{xy}{r(x+y+z)}=\dfrac{r}{z}

\longrightarrow r^2=\dfrac{xyz}{x+y+z}

\longrightarrow r=\sqrt{\dfrac{xyz}{x+y+z}}

Since s=x+y+z,

\longrightarrow r=\sqrt{\dfrac{xyz}{s}}

From (1), (2) and (3),

\longrightarrow r=\sqrt{\dfrac{(s-a)(s-b)(s-c)}{s}}\quad\quad\dots(5)

But, if A is the area of the triangle ABC, then,

\longrightarrow A=Area(\triangle AOB)+Area(\triangle BOC)+Area(\triangle COA)

\longrightarrow A=\dfrac{1}{2}\,ra+\dfrac{1}{2}\,rb+\dfrac{1}{2}\,rc

\longrightarrow A=\dfrac{r(a+b+c)}{2}

Since \dfrac{a+b+c}{2}=s,

\longrightarrow A=rs

\longrightarrow r=\dfrac{A}{s}

Hence (5) becomes,

\longrightarrow \dfrac{A}{s}=\sqrt{\dfrac{(s-a)(s-b)(s-c)}{s}}

\longrightarrow A=s\sqrt{\dfrac{(s-a)(s-b)(s-c)}{s}}

\longrightarrow\underline{\underline{A=\sqrt{s(s-a)(s-b)(s-c)}}}

Hence Proved!

Attachments:
Similar questions