Math, asked by llalonell, 4 months ago

❥Prove that attachment.​

Attachments:

Answers

Answered by Anonymous
38

Proof :

\sf log_{y}( {x}^{2} ). log_{z}( {y}^{3} ) .log_{x}( {z}^{5} )log

Use Logarithms rule,

\boxed{\sf log_{a} {m}^{n} = n log_{a}m}

Therefore,

\sf = 2 log_{y}x \times 3 log_{z}y \times 5 log_{xz = 2 log}

=\sf 30 log_{y}x . log_{z}y. log_{x}z=30log

We know,

\boxed{ \sf log_{b}m = \frac{ log_{a}m }{ log_{a}b}}

Therefore,

\sf= 30 \times \frac{logx}{logy} \times \frac{logy}{logz} \times \frac{logz}{logx}

\sf = 30=30 = RHS

Hence proved !!.

Answered by Anonymous
44

To Prove,

\bull \sf \: log_yx {}^{2} .log_zy {}^{3} .log_xz {}^{5} = 30

Proof,

LHS

 \sf \: log_yx {}^{2} .log_zy {}^{3} .log_xz {}^{5}

[ Using logarithm rule ]

\blue\bigstar \sf \:  \log_am {}^{n}  = nlog_am

 \dashrightarrow \sf \: 2log_yx \:  . \: 3log_zy \: . \: 5log_xz\: \pink\bigstar

[ We know that ]

 \sf \red \bigstar \:  log_bm=  \dfrac{log_am}{log_ab}

 \dashrightarrow \sf \: 2   \cancel\dfrac{log \: x}{log \:y}  \times  3   \cancel\dfrac{log \: y}{log \: z}  \times 5  \cancel\dfrac{log \: z}{log \: x}

 \dashrightarrow \sf \: 2 \times 3 \times 5

 \dashrightarrow \sf \: 30 \:  \green \bigstar

RHS

Hence Proved !!

Similar questions