Math, asked by jananijohn9291, 10 months ago

Prove that ax(bxc)+bx(cxa)+cx(axb)=0 in vector formula

Answers

Answered by harendrachoubay
4

a\times (b\times c)+b\times(c\times a)+c\times(a\times b)=0, proved.

Step-by-step explanation:

Prove that, a\times (b\times c)+b\times(c\times a)+c\times(a\times b)=0

L.H.S.=a\times (b\times c)+b\times(c\times a)+c\times(a\times b)

=a\times (a)+b\times(b)+c\times(c)

[∵ b\times c=a,c\times a=b and a\times b=c]

=a\times a+b\times b+c\times c

= 0 + 0 + 0

[∵ a\times a=0,b\times b=0 and c\times c=0]

= 0

= R.H.S., proved.

Hence, a\times (b\times c)+b\times(c\times a)+c\times(a\times b)=0, proved.

Answered by jitumahi435
2

We have to prove prove that, a\times (b\times c)+b\times(c\times a)+c\times(a\times b)=0

Solution:

L.H.S.= a\times (b\times c)+b\times(c\times a)+c\times(a\times b)

=a\times (a)+b\times(b)+c\times(c)

Using the vector identity:

b\times c=a,c\times a=b and a\times b=c

= a\times a + b\times b + c\times c

= 0 + 0 + 0

Using the vector identity:

a\times a = 0, b\times b = 0 and c\times c = 0

= 0

= R.H.S., proved.

Thus, a\times (b\times c)+b\times(c\times a)+c\times(a\times b)=0, proved.

Similar questions