Math, asked by 7987501435prathambha, 10 months ago

Prove that b^2.x^2-a^2.y^2=a^2.b^2
If (1). x=a sec theta , y= b tan theta

Answers

Answered by Anonymous
7

Solution :-

Given :-

• x = a . sec θ

• y = b . tan θ

x = a . sec θ

⇒ x / a = sec θ

Squaring on both sides

⇒ ( x / a )² = sec² θ

⇒ x² / a² = sec² θ -- eq( 1 )

y = b . tan θ

⇒ y / b = tan θ

Squaring on both sides

⇒ ( y / b )² = tan² θ

⇒ y² / b² = tan² θ -- eq ( 2 )

 \tt Subtracting \ eq(2) \ from \ eq(1) \\  \\  \implies  \dfrac{ {x}^{2} }{ {a}^{2} }   -  \dfrac{ {y}^{2} }{ {b}^{2} }  =  \sec^{2} \theta -  \tan^{2}  \theta \\  \\   \implies\dfrac{ {x}^{2} }{ {a}^{2} }  -  \dfrac{ {y}^{2} }{ {b}^{2} }  = 1 \qquad \{ \because \sec^{2} \theta  -  \tan^{2}  \theta = 1 \} \\  \\  \tt Multiplying \ thoughout \ by  \ {a}^{2} {b}^{2}  \\  \\  \implies \dfrac{ {x}^{2} }{ {a}^{2} } ( {a}^{2}  {b}^{2} )  - \dfrac{ {y}^{2} }{ {b}^{2} } ( {a}^{2}  {b}^{2} ) = 1( {a}^{2}  {b}^{2}) \\  \\  \implies {b}^{2}  {x}^{2}   -  {a}^{2} {y}^{2}   =  {a}^{2}  {b}^{2} \\ \\   \bf Hence \ proved.

Similar questions