Prove that b + c = 2a.
Attachments:
Answers
Answered by
1
Step-by-step explanation:
Sol: Given that roots are equql.
So,discriminent will be equal to 0. i.e. b2 - 4ac = 0. ⇒ (b - c)2 - 4(a-b)(c - a) = 0 ⇒ b2 - 2bc + c2 - 4ac + 4a2 + 4bc - 4ab = 0 ⇒ b2 + c2- 4ac + 2bc - 4ab + 4a2=0 ⇒ 4a2 + b2 + c2-4ac + 2bc - 4ab = 0 ⇒ (b+c-2a)2 =0 [by algebraic identity-(-a + b + c)2 = a2 + b2 + c2 - 2a - 2ac + 2bc] ⇒ b + c- 2a = 0 ∴ b+c = 2a
Answered by
0
Answer:
sure I will mark as brainliest brooo ☺️☺️
Similar questions