Math, asked by Anonymous, 1 day ago

Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​

Answers

Answered by Anonymous
30

Prove that:

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

Proof:

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}

\sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}

\sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

Taking LHS

  \left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C +

Substituting the value of cos A, cos B and cos C,

 \left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

On combining the fractions,

\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

 \footnotesize \sf \dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

Regrouping the terms,

 \sf \footnotesize\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}\\  \:

 \sf \footnotesize\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

 \sf\longmapsto\dfrac{0}{2abc}

\mapsto\bf 0=RHS

LHS = RHS proved.

Answered by junaida8080
0

Answer:

The given statement is proved.

Step-by-step explanation:

Let us take LHS and find the value of it.

L.H.S.= \frac{b^2-c^2}{a}cosA+\frac{x^2-a^2}{b}cosB+\frac{a^2-b^2}{c}cosC.

From the law of cosines, we use the formulae for cosA, cosB and cosC.

Substituting the values in the equation, we get

=\frac{b^2-c^2}{a}\frac{b^2+c^2-a^2}{2bc}+\frac{c^2-a^2}{b}\frac{c^2+a^2-b^2}{2ca}+\frac{a^2-b^2}{c}\frac{a^2+b^2-c^2}{2ab}

Multiplying the values, we get

=\frac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}+\frac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}+\frac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}

=\frac{(b^2-c^2)(b^2+c^2)-a^2(b^2-c^2)}{2abc}+\frac{(c^2-a^2)(c^2+a^2)-b^2(c^2-a^2)}{2abc}+\frac{(a^2-b^2)(a^2+b^2)-c^2(a^2-b^2)}{2abc}

Now using the formula, (x+y)(x-y)=x^2-y^2

=\frac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\frac{c^4-a^4-b^2c^2+a^2c^2}{2abc}+\frac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

Now combining the fractions, since the denominators are same, we can add the numerators directly.

=\frac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2c^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

Now we cancel all the similar terms with opposite symbols,

=\frac{0}{2abc}

Anything that divides zero, gives the value zero.

=0

=R.H.S

Therefore, the given statement is proved.

Similar questions