prove that b2+c2/b+c + c2+a2/c+a + a2+b2/a+b > a+b+c
Answers
Answered by
0
Answer:
Answer
∣
∣
∣
∣
∣
∣
∣
∣
(b+c)
2
b
2
c
2
a
2
(c+a)
2
c
2
a
2
b
2
(a+b)
2
∣
∣
∣
∣
∣
∣
∣
∣
=(b+c)
2
[(c+a)
2
×(a+b)
2
−b
2
×c
2
]−
a
2
[b
2
×(a+b)
2
−b
2
×c
2
]+a
2
[b
2
c
2
−c
2
(c+a)
2
]
=b
2
+c
2
+2ab[(c
2
+a
2
+2ac)×(a
2
+b
2
+2ab)−b
2
c
2
]−a
2
[b
2
×(a
2
+b
2
+2ab)−b
2
c
2
]+a
2
[b
2
c
2
−c
2
(c
2
+a
2
+2ac)]
onsolvingandtakingcomonweget
=2abc(a
2
+b
2
+c
2
+2ab+2bc+2ca)
2
=2abc(a+b+c)
2
proved
Similar questions