Math, asked by sangeetabg18, 19 hours ago

prove that bc(b^3-c^3) +ca(c^3-a^3) +ab(a^3-b^3) = -(b-c)(c-a)(a-b)(a^2+b^2+c^2+ab+bc+ca)​

Answers

Answered by ajaydhayal
0

Answer:

LHS = (a + b + c) 3 – a

3 – b

3 – c

3

= [(a + b + c) 3 – a

3

] – [b

3 + c

3

]

= [{(a + b + c) – a}{(a + b + c)

2 + (a + b + c)a + a

2}]– [(b + c)(b

2 – bc + c

2

)]

[∵ a

3 – b

3 = (a – b)(a

2 + ab + b2

) and a

3 + b

3 = (a + b)(a

2 – ab + b2

)]

= (b + c){(a

2 + b2 + c

2 + 2ab + 2bc + 2ca) + (a

2 + ab + ac) + a

2}– [(b + c)(b2 –

bc + c2

)]

= (b + c)(3a

2 + b2+ c

2+ 3ab + 2bc + 3ca) – [(b + c)(b

2 – bc + c

2

)]

= (b + c)[(3a

2 + b2+ c

2+ 3ab + 2bc + 3ca) – (b

2 – bc + c

2

)]

= (b + c)[3a

2 + 3ab + 3bc + 3ca]

= 3(b + c)[a

2 + ab + bc + ca]

= 3(b + c)[a(a + b) + c(b + a)]

= 3(a + b) (b + c)(a + c)

= 3(a + b) (b + c)(c + a)

= RHS

Step-by-step explanation:

HOPE IT HELPS YOU DEAR☺

HAVE A NICE DAY AHEAD ❤❤❤

Similar questions