Math, asked by srivathsad24001, 9 months ago

prove that both the roots of the equation (x-a)x-b)+(x-b)(x-c)+(x-c)(x-a)=1 are real but they are equal only when a=b=c​

Answers

Answered by amansharma264
0

EXPLANATION.

Roots of the equation.

⇒ (x - a)(x - b) + (x - b)(x - c) + (x - c)(x - a).

Are real but they are equal only when : a = b = c.

As we know that,

We can write equation as,

⇒ [x² - bx - ax + ab] + [x² - cx - bx + bc] + [x² - ax - cx + ac] = 0.

⇒ x² - bx - ax + ab + x² - cx - bx + bc + x² - ax - cx + ac = 0.

⇒ x² + x² + x² - ax - ax - bx - bx - cx - cx + ab + bc + ac = 0.

⇒ 3x² - 2ax - 2bx - 2cx + ab + bc + ac = 0.

⇒ 3x² - 2(a + b + c)x + (ab + bc + ac) = 0.

As we know that,

D = discriminant Or b² - 4ac.

Using this formula in the equation, we get.

⇒ [-2(a + b + c)² - 4(3)(ab + bc + ac)] = 0.

⇒ [4(a² + b² + c² + 2ab + 2bc + 2ac) - 12[ab + bc + ca] = 0.

⇒ 4[a² + b² + c² + 2ab + 2bc + 2ca - 3ab - 3bc - 3ca] = 0.

⇒ 4[a² + b² + c² - ab - bc - ca] = 0.

⇒ 2[2a² + 2b² + 2c² - 2ab - 2bc - 2ca] = 0.

⇒ 2[(a - b)² + (b - c)² + (c - a)²] = 0.

Roots of equation are real and equal : D = 0.

⇒ a = b = c.

Hence Proved.

                                                                                                                   

MORE INFORMATION.

Nature of the roots of quadratic expression.

(1) Roots are real and unequal, if b² - 4ac > 0.

(2) Roots are rational and different, if b² - 4ac is a perfect square.

(3) Roots are real and equal, if b² - 4ac = 0.

(4) If D < 0 Roots are imaginary and unequal Or complex conjugate.

Similar questions