Math, asked by Rapmoonie, 1 day ago

Prove that by joining the points (2,1) (3,4) (-3,6) we get a right triangle​

Answers

Answered by BrainlyZendhya
6

You could verify this by plotting points to graph, (even without marking points), just approximately you can verify.

We know that,

  • \sf{A\:(x_1,\:y_1)\:=\:(2,\:1)}
  • \sf{A\:(x_2,\:y_2)\:=\:(3,\:4)}

\implies\sf{AB\:=\:{\sqrt{(x_2\:-\:x_1)^{2}\:+\:(y_2\:-\:y_1)^{2}}}}

\implies\sf{AB\:=\:{\sqrt{(3\:-\:2)^{2}\:+\:(4\:-\:1)^{2}}}}

\implies\sf{AB\:=\:{\sqrt{(1)^{2}\:+\:(3)^{2}}}}

\implies\sf{AB\:=\:{\sqrt{1\:+\:9}}}

\implies\sf{AB\:=\:{\sqrt{10}}}

Secondly,

  • \sf{B\:(x_1,\:y_1)\:=\:(3,\:4)}
  • \sf{C\:(x_2,\:y_2)\:=\:(-3,\:6)}

\implies\sf{BC\:=\:{\sqrt{(x_2\:-\:x_1)^{2}\:+\:(y_2\:-\:y_1)^{2}}}}

\implies\sf{BC\:=\:{\sqrt{(-3\:-\:3)^{2}\:+\:(6\:-\:4)^{2}}}}

\implies\sf{BC\:=\:{\sqrt{(6)^{2}\:+\:(2)^{2}}}}

\implies\sf{BC\:=\:{\sqrt{36\:+\:4}}}

\implies\sf{BC\:=\:{\sqrt{40}}}

Lastly,

  • \sf{C\:(x_1,\:y_1)\:=\:(-3,\:6)}
  • \sf{CA\:(x_2,\:y_2)\:=\:(2,\:1)}

\implies\sf{A\:=\:{\sqrt{(x_2\:-\:x_1)^{2}\:+\:(y_2\:-\:y_1)^{2}}}}

\implies\sf{CA\:=\:{\sqrt{(2\:-\:(-3))^{2}\:+\:(1\:-\:6)^{2}}}}

\implies\sf{CA\:=\:{\sqrt{(5)^{2}\:+\:(-5)^{2}}}}

\implies\sf{CA\:=\:{\sqrt{25\:+\:25}}}

\implies\sf{CA\:=\:{\sqrt{50}}}

By using Pythagoras Theorem,

\boxed{AC^2\:=\:AB^2\:+\:BC^2}

Substituting values, we get,

\implies\sf{{\sqrt{50}}^2\:=\:{\sqrt{10}}^2\:+\:{\sqrt{40}}^2}

\implies\sf{50\:=\:10\:+\:40}

\implies\sf{50\:=\:50}

Hence, Joining the points (2,1), (3,4) and (-3,6) we get a right angled triangle.

Attachments:
Answered by itzheartkiller48
2

Answer:

Let, A(2, 1), B(3, 4), C(-3, 6) be the vertices of the triangle ABC.

ab \:  =  \sqrt{ {(3 - 2)}^{2} +   {(4 - 1)}^{2}   }

 = \sqrt{ {1}^{2}   +  {3}^{2} }  =  \sqrt{10}

bc =  \sqrt{ { (- 3 - 3)}^{2}  +  {(6 - 4)}^{2}   }

 =  \sqrt{ {6}^{2} +  {2}^{2}  }  =  \sqrt{40}

ac \:  =  \sqrt{ {( 2 - 3)}^{2} \:  +  {(1 - 6)}^{2}  }

 \sqrt{ {5}^{2}  +  {( - 5)}^{2} }  =  \sqrt{50}

Using pythagoras theorem

 {ac}^{2}  =  {ab}^{2}  +  {bc}^{2}

50 =   {(√10)}^{2} +  {( \sqrt{40} }^{2}  = 50

Therefore, we obtain a right angle triangle

Similar questions