Math, asked by shreyamore045, 1 year ago

prove that by MI 1.2+2.3+3.4+_____to n terms=n/3(n+1)(n+2)

Answers

Answered by shadowsabers03
3

Question:-

Prove by Principle of Mathematical Induction that, \displaystyle\sf {P(n):1\cdot2+2\cdot3+3\cdot4+\ \dots\ +n(n+1)=\dfrac {n(n+1)(n+2)}{3}\ \forall n\in\mathbb {N}}

Solution:-

Let,

\displaystyle\longrightarrow\sf {P(n):1\cdot2+2\cdot3+3\cdot4+\ \dots\ +n(n+1)=\dfrac {n(n+1)(n+2)}{3}\ \forall n\in\mathbb {N}}

Consider P(1).

\displaystyle\longrightarrow\sf {LHS: 1\cdot2=2}

\displaystyle\longrightarrow\sf {RHS: \dfrac {1\cdot2\cdot3}{3}=2}

P(1) is true. So assume P(k) is true.

\displaystyle\longrightarrow\sf {P(k):1\cdot2+2\cdot3+3\cdot4+\ \dots\ +k(k+1)=\dfrac {k(k+1)(k+2)}{3}\ \forall k\in\mathbb {N}}

Consider P(k + 1).

\displaystyle\longrightarrow\sf {P(k+1):1\cdot2+2\cdot3+3\cdot4+\ \dots\ +(k+1)(k+2)=\dfrac {(k+1)(k+2)(k+3)}{3}\ \forall k\in\mathbb {N}}

Let's check whether it's true.

\displaystyle\longrightarrow\sf {LHS}

\displaystyle\longrightarrow\sf {1\cdot2+2\cdot3+3\cdot4+\ \dots\ +k(k+1)+(k+1)(k+2)}

\displaystyle\longrightarrow\sf {\dfrac {k(k+1)(k+2)}{3}+(k+1)(k+2)}

\displaystyle\longrightarrow\sf {(k+1)(k+2)\left [\dfrac {k}{3}+1\right]}

\displaystyle\longrightarrow\sf {\dfrac {(k+1)(k+2)(k+3)}{3}}

\displaystyle\longrightarrow\sf {RHS}

Therefore P(k + 1) is true whenever P(k) is true.

Hence P(n) is true \displaystyle\sf {\forall n\in\mathbb{N}.}

Similar questions
Math, 6 months ago