prove that c/a-b=tan a/2+tan b/2 /tan a/2-tan b/2
Answers
Given: The expression: c/a-b = tan A/2 + tan B/2 / tan A/2 - tan B/2
To find: Prove the above expression.
Solution:
- We know the formula:
a / sin A = b / sin B = c / sin C
- From this we have:
a/c = sin A / sin C and b/c = sin B / sin C .............(i)
- Now consider LHS, we have: c / (a - b)
- It can be written as:
1 / (a/c - b/c)
- Putting (i) in above equation, we get:
1 / ((sin A / sin C) - (sin B / sin C))
sin C / sin A - sin B
- Now consider RHS, we have: (tan A/2 + tan B/2) / (tan A/2 - tan B/2)
- Converting tan to sin and cos, we get:
(sin A/2/cos A/2 + sin B/2/cos B/2) / (sin A/2/cos A/2 - sin B/2/cos B/2)
(sin A/2 . cos B/2 + sin B/2 . cos A/2) / (sin A/2 . cos B/2 - sin B/2 . cos A/2)
- It can be written as:
2 sin(A + B/2) cos (A + B/2) / 2 sin(A - B/2) cos (A + B/2)
sin (A + B) / sin A - sin B
sin (180 - A - B) / sin A - sin B
sin C / sin A - sin B
LHS.......hence proved.
Answer:
So we proved that c/a-b = tan A/2 + tan B/2 / tan A/2 - tan B/2