prove that (casA+sinA)²+(cosA-sinA)²=2
Answers
Answered by
3
L.H.S
plz mark me as brain list.
Answered by
0
Step-by-step explanation:
We know that,
(x + y)² = x² + 2xy + y²
(x - y)² = x² - 2xy + y²
Now,
LHS = (CosA + SinA)² + (CosA - SinA)²
RHS = 2
Now,
LHS = (CosA + SinA)² + (CosA - SinA)²
Using the algebraic identities,
(Cos²A + 2CosASinA + Sin²A) + (Cos²A - 2CosASinA + Sin²A)
Opening the Brackets we get,
Cos²A + 2CosASinA + Sin²A + Cos²A - 2CosASinA + Sin²A
Sin²A + Cos²A + Sin²A + Cos²A + 2CosASinA - 2CosASinA
We know that,
Sin²A + Cos²A = 1
Thus,
(Sin²A + Cos²A) + (Sin²A + Cos²A)
= 1 + 1
= 2 = RHS
∴ LHS = RHS
Hence proved.
Hope it helped and believing you understood it........All the best
Similar questions