Math, asked by ayushchahar7715, 11 months ago

Prove that circles x²+y²=ax and x²+y²=by are orthogonal.

Answers

Answered by MaheswariS
0

Answer:

The given curves are orthogonal

Step-by-step explanation:

Prove that circles x²+y²=ax and x²+y²=by are orthogonal.

\text{Let }(x_1,y_1)\text{ be the point of intersection of given two curves}

Then,

x_1^2+y_1^2=ax_1.......(1)

x_1^2+y_1^2=ay_1.......(2)

x^2+y^2=ax

Differentiate with respect to x

2x+2y\:\frac{dy}{dx}=a

\mplies\:\frac{dy}{dx}=\frac{a-2x}{2y}

\text{slope of tangent }m_1=(\frac{dy}{dx})(x_1,y_1)

\implies\:m_1=\frac{a-2x_1}{2y_1}

x^2+y^2=ay

Differentiate with respect to x

2x+2y\:\frac{dy}{dx}=a\frac{dy}{dx}

2y\:\frac{dy}{dx}-a\frac{dy}{dx}=-2x

\frac{dy}{dx}(2y-a)=-2x

\frac{dy}{dx}=\frac{-2x}{2y-a}

\text{slope of tangent }m_2=(\frac{dy}{dx})(x_1,y_1)

\implies\:m_2=\frac{-2x_1}{2y_1-a}

Now,

m_1\times\:m_2

=\frac{a-2x_1}{2y_1}\times\:\frac{-2x_1}{2y_1-a}

=\frac{a-2x_1}{y_1}\times\:\frac{-x_1}{2y_1-a}

=\frac{-ax_1+2x_1^2}{2y_1^2-ay_1}

=\frac{x_1^2+(x_1^2-ax_1)}{y_1^2+(y_1^2-ay_1)}\:\text{ using(1) and (2)}

=\frac{x_1^2-y_1^2}{y_1^2-x_1^2}

=\frac{x_1^2-y_1^2}{-(x_1^2-y_1^2)}

=-1

\implies\:\boxed{m_1\times\:m_2=-1}

\text{Hence, the given curves are orthogonal}

Similar questions