Math, asked by mafiji6035, 3 months ago

Prove that ( Class 10 trigonometry ) ​​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \frac{ \tan^{2} ( \theta) }{1 +  \tan^{2} ( \theta) } + \frac{ \cot^{2} ( \theta) }{1 +  \cot^{2} ( \theta) } \\

 =  \frac{ \tan^{2} ( \theta) }{1 +  \tan^{2} ( \theta) } + \frac{  \frac{1}{\tan^{2} ( \theta) }}{1 +   \frac{1}{\tan^{2} ( \theta) }} \\

  = \frac{ \tan^{2} ( \theta) }{1 +  \tan^{2} ( \theta) } + \frac{ 1}{1 +  \tan^{2} ( \theta) } \\

  = \frac{ 1 + \tan^{2} ( \theta) }{1 +  \tan^{2} ( \theta) }\\

  = 1 \\

Similar questions