Math, asked by Zoemazumdar, 7 months ago

prove that (codec theta + cot theta) ^2 = sec theta +1 / sec theta - 1​

Answers

Answered by MaIeficent
3

Step-by-step explanation:

\sf \underline{To\:Prove:-}

\sf {(cosec \theta + cot \theta)}^{2}  =  \dfrac{sec \theta + 1}{sec \theta  1}

Formulas used:-

\sf cosec\theta = \dfrac{1}{sin\theta}

\sf cot\theta = \dfrac{cos\theta}{sin\theta}

\sf \underline{Proof:-}

\sf LHS = {(cosec \theta + cot \theta)}^{2}

\sf = {  \bigg(\dfrac{1}{sin\theta }+  \dfrac{cos\theta}{sin \theta} \bigg)}^{2}

\sf = {  \bigg( \dfrac{1 + cos\theta}{sin \theta} \bigg)}^{2}

\sf = {  \dfrac{(1 + cos\theta)^{2} }{sin ^{2}  \theta}}

\sf = {  \dfrac{(1 + cos\theta)^{2} }{1 - cos^{2}  \theta}}

\sf = {  \dfrac{(1 + cos\theta)^{2} }{(1 + cos \theta)(1 - cos\theta)}}

\sf = {  \dfrac{(1 + cos\theta)(1 + cos \theta) }{(1 + cos \theta)(1 - cos\theta)}}

\sf =  \dfrac{1 + cos \theta}{1 - cos\theta}

\sf =  \dfrac{1 +  \dfrac{1}{sec \theta} }{1 - \dfrac{1}{sec \theta} }

\sf =  \dfrac{  \dfrac{sec \theta + 1}{sec \theta} }{ \dfrac{sec \theta - 1}{sec \theta} }

\sf =  \dfrac{  sec \theta + 1}{ sec \theta - 1} =RHS

\sf LHS = RHS

\sf \underline{Hence\: Proved}

Answered by alok4171
0

Answer:

Hope you find this helpful.

Attachments:
Similar questions