Math, asked by nivesh9168, 1 year ago

prove that cos^-1(63/65) + 2 tan^-1(1/5) = sin^-1(3/5)

Answers

Answered by zagreb
13

The solution is attached as a word file

Attachments:
Answered by tardymanchester
21

Answer:

Proof below.

Step-by-step explanation:

Given : \cos^{-1}(\frac{63}{65}) + 2 \tan^{-1}(\frac{1}{5}) = \sin^{-1}(\frac{3}{5})

To prove : The given expression?

Solution :

LHS - \cos^{-1}(\frac{63}{65}) + 2 \tan^{-1}(\frac{1}{5})

We know, Using the identity

\cos^{-1}(\frac{a}{b})=\tan^{-1}(\frac{\sqrt{b^2-a^2}}{a})

2\tan^{-1}a=\tan^{-1}(\frac{2a}{1-a^2})

\tan^{-1}a+\tan^{-1}b=\tan^{-1}(\frac{a+b}{1-ab})

\tana{-1}(\frac{a}{b})=\sin^{-1}(\frac{a}{\sqrt{a^2+b^2}})

Substitute in,

\cos^{-1}(\frac{63}{65}) =\tan^{-1}(\frac{\sqrt{65^2-63^2}}{63})=\tan^{-1}(\frac{16}{63})

2 \tan^{-1}(\frac{1}{5})=\tan^{-1}(\frac{2(\frac{1}{5})}{1-(\frac{1}{5})^2})=\tan^{-1}(\frac{5}{12})

Substitute in LHS,

=\cos^{-1}(\frac{63}{65}) + 2 \tan^{-1}(\frac{1}{5})

=\tan^{-1}(\frac{16}{63}) +\tan^{-1}(\frac{5}{12})

=\tan^{-1}(\frac{\frac{16}{63}+\frac{5}{12}}{1-(\frac{16}{63})(\frac{5}{12})})

=\tan^{-1}(\frac{3}{4})

=\sin^{-1}(\frac{3}{\sqrt{3^2+4^2}})

=\sin^{-1}(\frac{3}{5})

=RHS

Therefore, LHS=RHS

Similar questions