Math, asked by abhijay1705, 3 months ago

PROVE THAT
cos(θ) / 1 - sin(θ) + cos(θ) / 1 + sin(θ) = 2 sec(θ)

Answers

Answered by MagicalLove
50

Step-by-step explanation:

 \boldsymbol{ \underline{Solution:-}}

 \boldsymbol {\underline{ \pink{To  \:  \: prove \:  \: that \: :-}}}

 \bf \:  \dfrac{cos  \:  \theta}{1 -  \: sin \:  \theta}  +  \dfrac{cos \:  \theta}{1 + sin \:  \theta} = 2 \: sec \:  \theta

Proof :

LHS :

 \sf \implies \purple{ \dfrac{cos \:  \theta}{1 - sin \:  \theta}  +  \dfrac{cos \:  \theta}{1 + sin \:  \theta} }

\sf \implies \purple{ \dfrac{cos \:  \theta + sin \:  \theta \: cos \:  \theta + cos \:  \theta - sin \:  \theta \: cos \:  \theta}{ {1}^{2} -  {sin}^{2}  \theta} }

\sf \implies \purple{ \dfrac{2 \: cos \:  \theta}{ {cos}^{2}  \:  \theta} }

\sf \implies \purple{2 \left (\dfrac{1}{cos \:  \theta} \right)}

we know that,

1/cos A = sec A

\sf \implies \purple{2 \: sec \:  \theta}

LHS = RHS

Hence Proved !!


myidatulrajpandey3: hi
gauravbhandari612003: are u on
gauravbhandari612003: i. n. s. t. agram
myidatulrajpandey3: ur intro
Answered by raog50186
0

Step-by-step explanation:

Step-by-step explanation:

\boldsymbol{ \underline{Solution:-}}

Solution:−

\boldsymbol {\underline{ \pink{To \: \: prove \: \: that \: :-}}}

Toprovethat:−

\bf \: \dfrac{cos \: \theta}{1 - \: sin \: \theta} + \dfrac{cos \: \theta}{1 + sin \: \theta} = 2 \: sec \: \theta

1−sinθ

cosθ

+

1+sinθ

cosθ

=2secθ

Proof :

LHS :

\sf \implies \purple{ \dfrac{cos \: \theta}{1 - sin \: \theta} + \dfrac{cos \: \theta}{1 + sin \: \theta} }⟹

1−sinθ

cosθ

+

1+sinθ

cosθ

\sf \implies \purple{ \dfrac{cos \: \theta + sin \: \theta \: cos \: \theta + cos \: \theta - sin \: \theta \: cos \: \theta}{ {1}^{2} - {sin}^{2} \theta} } ⟹

1

2

−sin

2

θ

cosθ+sinθcosθ+cosθ−sinθcosθ

\sf \implies \purple{ \dfrac{2 \: cos \: \theta}{ {cos}^{2} \: \theta} }⟹

cos

2

θ

2cosθ

\sf \implies \purple{2 \left (\dfrac{1}{cos \: \theta} \right)} ⟹2(

cosθ

1

)

we know that,

1/cos A = sec A

\sf \implies \purple{2 \: sec \: \theta}⟹2secθ

LHS = RHS

Hence Proved !!

Similar questions