PROVE THAT
cos(θ) / 1 - sin(θ) + cos(θ) / 1 + sin(θ) = 2 sec(θ)
Answers
Step-by-step explanation:
Proof :
LHS :
we know that,
1/cos A = sec A
LHS = RHS
Hence Proved !!
Step-by-step explanation:
Step-by-step explanation:
\boldsymbol{ \underline{Solution:-}}
Solution:−
\boldsymbol {\underline{ \pink{To \: \: prove \: \: that \: :-}}}
Toprovethat:−
\bf \: \dfrac{cos \: \theta}{1 - \: sin \: \theta} + \dfrac{cos \: \theta}{1 + sin \: \theta} = 2 \: sec \: \theta
1−sinθ
cosθ
+
1+sinθ
cosθ
=2secθ
Proof :
LHS :
\sf \implies \purple{ \dfrac{cos \: \theta}{1 - sin \: \theta} + \dfrac{cos \: \theta}{1 + sin \: \theta} }⟹
1−sinθ
cosθ
+
1+sinθ
cosθ
\sf \implies \purple{ \dfrac{cos \: \theta + sin \: \theta \: cos \: \theta + cos \: \theta - sin \: \theta \: cos \: \theta}{ {1}^{2} - {sin}^{2} \theta} } ⟹
1
2
−sin
2
θ
cosθ+sinθcosθ+cosθ−sinθcosθ
\sf \implies \purple{ \dfrac{2 \: cos \: \theta}{ {cos}^{2} \: \theta} }⟹
cos
2
θ
2cosθ
\sf \implies \purple{2 \left (\dfrac{1}{cos \: \theta} \right)} ⟹2(
cosθ
1
)
we know that,
1/cos A = sec A
\sf \implies \purple{2 \: sec \: \theta}⟹2secθ
LHS = RHS
Hence Proved !!