Math, asked by abdullahniyaz1607, 9 months ago

Prove that Cos 10 Cos 30' Cos 50' Cos 70º = 3/16

Answers

Answered by adi03042003
1

Answer:

3/16

Step-by-step explanation:

Answer is

 \cos(10)  \cos(30)  \cos(50)  \cos(70)  \\  =  \frac{ \sqrt{3} }{2}  \times  \cos(10)  \cos(60 - 10)  \cos(60 + 10)  \\  =  \frac{ \sqrt{3} }{2}  \frac{1}{4}  \cos(3 \times 10)  \\  =  \frac{ \sqrt{3} }{8}  \times  \cos(30)  \\  =  \frac{ \sqrt{3} }{8}  \times  \frac{ \sqrt{3} }{2}  \\  =  \frac{3}{16}

We know that

 \cos( \alpha )  \cos(60 -  \alpha )  \cos(60 +  \alpha )   =  \frac{1}{4}  \cos(3 \alpha )

Thank you

Similar questions