prove that cos 10°.cos 50°.cos 60° .cos 70° =
Answers
Ans---> √3 / 16
To find---> Cos10° Cos50° Cos60° Cos70°
Solution---> We have an identity,
2CosA CosB = Cos( A + B ) Cos( A - B )
Cos10° Cos50° Cos60° Cos70°
Multiplying and dividing by 2, we get,
= ( 2 Cos70° Cos 50° ) Cos10° ( 1/2 ) / 2
= {cos( 70° + 50° ) + Cos( 70° - 50° )}Cos10° / 4
= ( Cos 120° + Cos 20° ) Cos10° / 4
= (1/4) ( Cos120° Cos10° + Cos20° Cos10° )
= ( 1 / 8 ) (2Cos120° Cos10° + 2 Cos20° Cos10° )
Putting Cos120° = -1/2 in it we get
= ( 1/8 ){2(-1/2) Cos10°+Cos(20° + 10°)+Cos(20°-10°)}
=(1/8) (- Cos 10° + Cos30° + Cos 10° )
- Cos10° and Cos10° cancel out each other
= ( 1 / 8 ) Cos30°
Putting Cos30° = √3 / 2 in it
= ( 1 / 8 ) ( √3 / 2 )
= √3 / 16
Good Night!
Step-by-step explanation:
2CosA CosB = Cos( A + B ) Cos( A - B )
Cos10° Cos50° Cos60° Cos70°
Multiplying and dividing by 2, we get,
= ( 2 Cos70° Cos 50° ) Cos10° ( 1/2 ) / 2
= {cos( 70° + 50° ) + Cos( 70° - 50° )}Cos10° / 4
= ( Cos 120° + Cos 20° ) Cos10° / 4
= (1/4) ( Cos120° Cos10° + Cos20° Cos10° )
= ( 1 / 8 ) (2Cos120° Cos10° + 2 Cos20° Cos10° )
Putting Cos120° = -1/2 in it we get
= ( 1/8 ){2(-1/2) Cos10°+Cos(20° + 10°)+Cos(20°-10°)}
=(1/8) (- Cos 10° + Cos30° + Cos 10° )
- Cos10° and Cos10° cancel out each other
= ( 1 / 8 ) Cos30°
Putting Cos30° = √3 / 2 in it
= ( 1 / 8 ) ( √3 / 2 )