prove that cos 105 + cos 15=sin 75-sin 15
Answers
Answered by
161
LHS =cos105 + cos15
=cos (90+15) + cos (90-75)
=-sin15+sin75
=sin75-sin15=RHS
=cos (90+15) + cos (90-75)
=-sin15+sin75
=sin75-sin15=RHS
Answered by
55
Answer:
cos105°+cos15° = sin75°-sin155°
Step-by-step explanation:
LHS = cos105° +cos15°
=cos(90°+15°)+cos(90°-75°)
/* We know that,
i ) cos(90°+A) = -sinA
ii) cos(90°-A) = SinA
= -sin15°+sin75°
=sin75°-sin15°
=RHS
Therefore,
cos105°+cos15° = sin75°-sin155°
•••♪
Similar questions