Math, asked by yogeshchavan1151, 11 months ago

Prove that cosπ/11 cos2π/11 cos3π/11 cos4π/11 cos5π/11=1/32

Answers

Answered by Jyotirmaya
51
hope its useful....
thank you.....
Attachments:
Answered by isyllus
43

To prove: \cos\left(\frac{\pi}{11}\right)\cdot\cos\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)=\dfrac{1}{32}

This is trigonometry prove. Taking left side and to prove the right side.

\Rightarrow \cos\left(\frac{\pi}{11}\right)\cdot\cos\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Multiply by 2\sin\left(\frac{\pi}{11}\right) at numerator and denominator

\Rightarrow \dfrac{1}{2\sin\left(\frac{\pi}{11}\right)}2\sin\left(\frac{\pi}{11}\right)\cdot \cos\left(\frac{\pi}{11}\right)\cdot\cos\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Formula: 2sin a cos a = sin(2a)

\Rightarrow \dfrac{1}{2\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Multiply by 2 at numerator and denominator

\Rightarrow \dfrac{1}{2^2\sin\left(\frac{\pi}{11}\right)}2\sin\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{2\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Formula: 2sin a cos a = sin(2a)

\Rightarrow \dfrac{1}{2^2\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{4\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Multiply by 2 at numerator and denominator and 2sin a cos a = sin(2a)

\Rightarrow \dfrac{1}{2^3\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{8\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

\sin\left(\frac{8\pi}{11}\right)=\sin\left(\pi-\frac{3\pi}{11}\right)=\sin\left(\frac{3\pi}{11}\right)

\Rightarrow \dfrac{1}{2^3\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{3\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Multiply by 2 at numerator and denominator and 2sin a cos a = sin(2a)

\Rightarrow \dfrac{1}{2^4\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{6\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

\sin\left(\frac{6\pi}{11}\right)=\sin\left(\pi-\frac{5\pi}{11}\right)=\sin\left(\frac{5\pi}{11}\right)

\Rightarrow \dfrac{1}{2^4\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{5\pi}{11}\right)\cdot\cos\left(\frac{5\pi}{11}\right)

Multiply by 2 at numerator and denominator and 2sin a cos a = sin(2a)

\Rightarrow \dfrac{1}{2^5\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{10\pi}{11}\right)

\Rightarrow \dfrac{1}{2^5\sin\left(\frac{\pi}{11}\right)}\sin\left(\pi-\frac{\pi}{11}\right)

\Rightarrow \dfrac{1}{2^5\sin\left(\frac{\pi}{11}\right)}\sin\left(\frac{\pi}{11}\right)

\Rightarrow \dfrac{1}{2^5}

\Rightarrow \dfrac{1}{32}

Hence Proved

Similar questions