prove that cos 11°+ sin11°÷cos11°-sin11°= tan 56°
Answers
Answer:
as show in photo attached. trick is to identify tan 45 = 1 and applying formulae for Tan(a+b)
Step-by-step explanation:
as shown.
Answer:
Using the facts that sin(45) = cos(45) = 1/(sqrt(2))
(sin(11) + cos(11))= sqrt(2){ sin(11)cos(45) + cos(11)sin(45) } = sqrt(2)(sin(56))
(cos(11) - sin(11)) = sqrt(2){ cos(11)cos(45) - sin(11)sin(45) } = sqrt(2)(cos(56))
Dividing the two identities, (sin(11) + cos(11))/(cos(11) - sin(11)) = tan(56)
OR
cos11°+sin11°cos11°−sin11°
cos11°+sin11°cos11°−sin11° =1+tan11°1−tan11°(dividing both numerator and denominator by cos 11°)
cos11°+sin11°cos11°−sin11° =1+tan11°1−tan11°(dividing both numerator and denominator by cos 11°)=tan45°+tan11°1−tan45°tan11°(∵tan45°=1)
cos11°+sin11°cos11°−sin11° =1+tan11°1−tan11°(dividing both numerator and denominator by cos 11°)=tan45°+tan11°1−tan45°tan11°(∵tan45°=1)=tan(45°+11°)
cos11°+sin11°cos11°−sin11° =1+tan11°1−tan11°(dividing both numerator and denominator by cos 11°)=tan45°+tan11°1−tan45°tan11°(∵tan45°=1)=tan(45°+11°)[∵tan(A+B)=tanA+tanB1−tanAtanB]
cos11°+sin11°cos11°−sin11° =1+tan11°1−tan11°(dividing both numerator and denominator by cos 11°)=tan45°+tan11°1−tan45°tan11°(∵tan45°=1)=tan(45°+11°)[∵tan(A+B)=tanA+tanB1−tanAtanB]=tan56°
please mark me as brainly.......