Prove that cosπ/13cos2π/13cos3π/13cos4π/13cos5π/13cos6π/13=1/64
Answers
LHS=
Cosπ/13 Cos 2π/13 Cos3π /13 Cos4π/13 Cos 5π /13 Cos 6π/13
We have a formula
2Sinθ Cosθ = Sin 2θ
Applying it here
1
= -------------- (2Sinπ/13Cosπ/13)Cos2π/13
2 Sinπ/13
Cos3π/13 Cos4π/13 Cos6π/13
1
=----------------(2 Sin2π/13Cos2π/13)
4 Sinπ/13
Cos3π/13 Cos4π/13 Cos5π/13Cos6π/13
1
=-----------------(2Sin4π/13Cos4π/13)
8Sinπ/13
Cos3π/13 Cos5π/13Cos 6π/13
1
= -------------- Sin8π/13Cos5π/13Cos6π/13
8Sinπ/13
Cos3π/13
We know that
5π
Sin8π /13 = Sin( π - -------)
13
= Sin 5π/13
Putting it here
1
= --------------Sin5π/13 Cos5π/13 Cos6π/13
8 Sin π/13
Cos 3π/13
1
=--------------2Sin5π/13Cos5π/13 Cos6π/13 16Sin π/13
Cos3π/13
1
=---------------- Sin 10π/13 Cos6π/13
16Sinπ/13
Cos 3π/13
We know that
Sin10π /13 = Sin( π - 3π /13)
= Sin 3π/13
1
=------------------ 2Sin3π/13cos 3π/13
32 Sin π/13
Cos 6π/13
1
= ----------------- 2Sin 6π/13 Cos 6π/13
64 Sin π/13
1
= --------------------- Sin 12π /13
64 Sin π/13
1
= ---------------------- Sin (π - π /13 )
64 Sin π/13
1
= ---------------------- Sin π /13
64 Sin π /13
1
= ----------- =RHS
64