Math, asked by ghimireprince444, 2 months ago

(Prove that)
cos 14°– sin 14°
cos 140+ sin 14°
= cot 59°
plz help me to do this.
if anyone solve this for me then i will mark him/her brilliant.​

Answers

Answered by 10526
7

Answer:

Step-by-step explanation:

You can take help form the give images

(PLEASE MARK ME BRANILIEST)

Attachments:
Answered by swethassynergy
1

Correct Question

Prove that    

\frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree

Answer:

It is proved that    \frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree.

Step-by-step explanation:

Given:

\frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree

To Find:

It is to be proved that \frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree.

Formula Used:

tan(A-B)=\frac{tanA-tanB}{1+tanA.tanB}

Solution:

As given- \frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree

 LHS=\frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree}

Divide the numerator and denominator by cos14 \textdegree.

LHS=\frac{\frac{cos14\textdegree}{cos14\textdegree} -\frac{sin14\textdegree}{cos14\textdegree} }{\frac{cos14\textdegree}{sin14\textdegree} +\frac{sin14\textdegree}{cos14\textdegree} }

        =\frac{1-tan14\textdegree}{1+tan14\textdegree}

        =\frac{1-tan14\textdegree}{1+ 1.tan14\textdegree}

Putting 1=tan45\textdegree.

       =\frac{tan45\textdegree-tan14\textdegree}{1+tan45\textdegree.tan14\textdegree}      

       = tan( 45\textdegree-14\textdegree)  

       = tan31\textdegree

       = tan(90\textdegree-59\textdegree)

       =cot 59\textdegree

       =RHS

LHS=RHS

Hence, it is It is proved that    \frac{cos14\textdegree-sin 14\textdegree}{cos14\textdegree+sin 14\textdegree} = cot \ 59\textdegree.

Similar questions