Math, asked by kashifmohiuddin06, 10 months ago

prove that cos 19 - sin 19 / cos 19 + sin 19 =cot 74

Answers

Answered by pulakmath007
7

SOLUTION

TO PROVE

 \displaystyle \sf{ \frac{ \cos  {19}^{ \circ}  -  \sin{19}^{ \circ} }{\cos  {19}^{ \circ}   +   \sin{19}^{ \circ} }  =  \cot  {64}^{ \circ} }

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

 \displaystyle \sf{ \frac{ \cot   \alpha    \cot  \beta  - 1}{ \cot  \beta  +  \cot  \alpha }  =  \cot ( \beta  +  \alpha )}

PROOF

 \displaystyle \sf{ \frac{ \cos  {19}^{ \circ}  -  \sin{19}^{ \circ} }{\cos  {19}^{ \circ}   +   \sin{19}^{ \circ} }  }

 \displaystyle \sf{  = \frac{  \displaystyle \sf{ \frac{\cos  {19}^{ \circ}}{ \sin{19}^{ \circ} } }   - \displaystyle \sf{ \frac{\sin  {19}^{ \circ}}{ \sin{19}^{ \circ} }}}{ \displaystyle \sf{ \frac{\cos  {19}^{ \circ}}{ \sin{19}^{ \circ} } }    +  \displaystyle \sf{ \frac{\sin  {19}^{ \circ}}{ \sin{19}^{ \circ} }} }  }

 \displaystyle \sf{  = \frac{ \cot  {19}^{ \circ}  -  1}{\cot  {19}^{ \circ}   +   1 }  }

 \displaystyle \sf{  = \frac{ \cot  {19}^{ \circ}   \cot  {45}^{ \circ} -  1}{\cot  {19}^{ \circ}   +     \cot  {45}^{ \circ} }  }

 \displaystyle \sf{  = \cot  ({19}^{ \circ}   +  {45}^{ \circ}) }

 \displaystyle \sf{  = \cot  {64}^{ \circ}    }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if sin theta =√3/2,cos theta=-1/2 then theta lies in

https://brainly.in/question/31225531

2. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Answered by billintyvarralaya
0

Answer:

SOLUTION

TO PROVE

\displaystyle \sf{ \frac{ \cos {19}^{ \circ} - \sin{19}^{ \circ} }{\cos {19}^{ \circ} + \sin{19}^{ \circ} } = \cot {64}^{ \circ} }

cos19

+sin19

cos19

−sin19

=cot64

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric formula that

\displaystyle \sf{ \frac{ \cot \alpha \cot \beta - 1}{ \cot \beta + \cot \alpha } = \cot ( \beta + \alpha )}

cotβ+cotα

cotαcotβ−1

=cot(β+α)

PROOF

\displaystyle \sf{ \frac{ \cos {19}^{ \circ} - \sin{19}^{ \circ} }{\cos {19}^{ \circ} + \sin{19}^{ \circ} } }

cos19

+sin19

cos19

−sin19

\displaystyle \sf{ = \frac{ \displaystyle \sf{ \frac{\cos {19}^{ \circ}}{ \sin{19}^{ \circ} } } - \displaystyle \sf{ \frac{\sin {19}^{ \circ}}{ \sin{19}^{ \circ} }}}{ \displaystyle \sf{ \frac{\cos {19}^{ \circ}}{ \sin{19}^{ \circ} } } + \displaystyle \sf{ \frac{\sin {19}^{ \circ}}{ \sin{19}^{ \circ} }} } }=

sin19

cos19

+

sin19

sin19

sin19

cos19

sin19

sin19

\displaystyle \sf{ = \frac{ \cot {19}^{ \circ} - 1}{\cot {19}^{ \circ} + 1 } }=

cot19

+1

cot19

−1

\displaystyle \sf{ = \frac{ \cot {19}^{ \circ} \cot {45}^{ \circ} - 1}{\cot {19}^{ \circ} + \cot {45}^{ \circ} } }=

cot19

+cot45

cot19

cot45

−1

\displaystyle \sf{ = \cot ({19}^{ \circ} + {45}^{ \circ}) }=cot(19

+45

)

\displaystyle \sf{ = \cot {64}^{ \circ} }=cot64

Hence proved

Similar questions