prove that cos 19 - sin 19 / cos 19 + sin 19 =cot 74
Answers
SOLUTION
TO PROVE
FORMULA TO BE IMPLEMENTED
We are aware of the Trigonometric formula that
PROOF
Hence proved
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. if sin theta =√3/2,cos theta=-1/2 then theta lies in
https://brainly.in/question/31225531
2. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)
https://brainly.in/question/23306292
Answer:
SOLUTION
TO PROVE
\displaystyle \sf{ \frac{ \cos {19}^{ \circ} - \sin{19}^{ \circ} }{\cos {19}^{ \circ} + \sin{19}^{ \circ} } = \cot {64}^{ \circ} }
cos19
∘
+sin19
∘
cos19
∘
−sin19
∘
=cot64
∘
FORMULA TO BE IMPLEMENTED
We are aware of the Trigonometric formula that
\displaystyle \sf{ \frac{ \cot \alpha \cot \beta - 1}{ \cot \beta + \cot \alpha } = \cot ( \beta + \alpha )}
cotβ+cotα
cotαcotβ−1
=cot(β+α)
PROOF
\displaystyle \sf{ \frac{ \cos {19}^{ \circ} - \sin{19}^{ \circ} }{\cos {19}^{ \circ} + \sin{19}^{ \circ} } }
cos19
∘
+sin19
∘
cos19
∘
−sin19
∘
\displaystyle \sf{ = \frac{ \displaystyle \sf{ \frac{\cos {19}^{ \circ}}{ \sin{19}^{ \circ} } } - \displaystyle \sf{ \frac{\sin {19}^{ \circ}}{ \sin{19}^{ \circ} }}}{ \displaystyle \sf{ \frac{\cos {19}^{ \circ}}{ \sin{19}^{ \circ} } } + \displaystyle \sf{ \frac{\sin {19}^{ \circ}}{ \sin{19}^{ \circ} }} } }=
sin19
∘
cos19
∘
+
sin19
∘
sin19
∘
sin19
∘
cos19
∘
−
sin19
∘
sin19
∘
\displaystyle \sf{ = \frac{ \cot {19}^{ \circ} - 1}{\cot {19}^{ \circ} + 1 } }=
cot19
∘
+1
cot19
∘
−1
\displaystyle \sf{ = \frac{ \cot {19}^{ \circ} \cot {45}^{ \circ} - 1}{\cot {19}^{ \circ} + \cot {45}^{ \circ} } }=
cot19
∘
+cot45
∘
cot19
∘
cot45
∘
−1
\displaystyle \sf{ = \cot ({19}^{ \circ} + {45}^{ \circ}) }=cot(19
∘
+45
∘
)
\displaystyle \sf{ = \cot {64}^{ \circ} }=cot64
∘
Hence proved