Math, asked by kavin6557, 10 months ago

Prove that Cos^2 49 + Cos^2 41/ Sin^2 31 + Sin^2 59 + 2 tan 35 tan 55 =3

Answers

Answered by surendrasahoo
16

Hey your answer is in the given attachment

HOPE IT IS HELPFUL

#thank you#

Attachments:
Answered by Anonymous
5

\huge{\orange{\fbox{\green{\fbox{\mathcal{\orange{An}\blue{sw}\green{er}}}}}}}

\large{\orange{\fbox{\green{\fbox{\mathcal{\orange{No}\green{te}}}}}}}

  • \orange{sin(90-\theta)=cos(\theta)}
  • \blue{cos(90-\theta)=sin(\theta)}
  • \green{tan(90-\theta)=cot(\theta)}\orange{sin^2(\theta)+cos^2(\theta)=1}
  • \blue{tan(\theta).cot(\theta)=1}

\large{\orange{\fbox{\green{\fbox{\mathcal{\orange{Sol}\blue{ut}\green{ion}}}}}}}

  • \large{\green{Considering\;L.H.S}}
  • \orange{\dfrac{cos^2(49)+cos^2(90-49)}{sin^2(31)+sin^2(90-31)}+2tan(35)tan(90-35)}
  • \blue{\dfrac{cos^2(49)+sin^2(49)}{sin^2(31)+cos^2(31)}+2tan(35)cot(35)}

  • \green{\dfrac{1}{1}+2(1)}

  • \orange{3}

  • \blue{Hence,\;\dfrac{cos^2(49)+cos^2(41)}{sin^2(31)+sin^2(59)}+2tan(35)tan(55)=3}
  • \green{Therefore\;the\;above\;result\;is\;proved}
Similar questions