prove that ,
(cos^2 A) / ( 2- 2sin^2 A - cosec^2 A ) =
(M^2) / (2M^2 - P^2 )
Here , M = cosA + sinA P = secA + cosecA
Answers
Step-by-step explanation:
Proof :-
Given that
M = Cos A + Sin A
On squaring both sides then
=> M² = ( Cos A + Sin A )²
=> M² = Cos² A + 2 Sin A Cos A + Sin² A
Since , (a+b)² = a²+2ab+b²
=> M² = ( Sin² A + Co² A) + 2 Sin A Cos A
We know that
Sin² A + Cos² A = 1
Therefore, M² = 1 + 2 Sin A Cos A
We know that
Sin 2A = 2 Sin A Cos A
M² = 1+Sin 2A -------(1)
Given that
P = Sec A + Cosec A
On squaring both sides then
=> P² = ( Sec A + Cosec A )²
=> P² = [ (1/Cos A)² + (1/SinA)²]
Since , Sec A = 1 / Cos A and
Cosec A = 1 / Sin A
=> P² = [(Sin A+ Cos A ) /(Cos A Sin A) ]²
=> P² = (Sin A+ Cos A ) ²/ (Sin A Cos A)²
=> P² = (1+2 Sin A Cos A )/(Sin²A Cos² A)
=> P² = (1+ Sin 2A ) /(Sin² A Cos² A) ----(2)
Now,
2M²-P²
= [2(1 +Sin 2A)]-[(1+Sin 2A)/(Sin²A Cos² A)]
On taking (1+Sin 2A ) as common factor
= (1+Sin 2A) [ 2- {1/Sin² A Cos² A} ]
= (1+Sin 2A) [(2 Sin² A Cos² A-1) / Sin² A Cos² A]
Now,
RHS = M²/ (2M²-P²)
= (1+Sin 2A) / [(1+Sin 2A){(2 Sin² A Cos²A - 1) / Sin² A Cos² A } ]
On cancelling (1+Sin 2A ) in both numerator and denominator then
=> 1/ [(2 Sin² A Cos² A-1) / Sin² A Cos² A ]
=> (Sin² A Cos² A) / (2 Sin² A Cos² A - 1)
On dividing both numerator and denominator with 'Sin² A' then
=> Cos² A / [2 Cos² A - (1/ Sin² A)]
=> Cos² A / (2 Cos² A- Cosec² A )
=> Cos² A / [ 2( 1- Sin² A) - Cosec² A]
Since, Sin² A + Cos² A = 1
=> Cos² A/ (2 - 2 Sin² A - Cosec² A)
Therefore,
M²/ (2M²-P²) = Cos² A/ (2 - 2 Sin² A - Cosec² A)
Hence, Proved.
Used formulae:-
→ Sin² A + Cos² A = 1
→ (a+b)² = a²+2ab+b²
→ 1/Sin A = Cosec A
→ 1/Cos A = Sec A
→ Sin 2A = 2 Sin A Cos A
Step-by-step explanation:
Step-by-step explanation:
Proof :-
Given that
M = Cos A + Sin A
On squaring both sides then
=> M² = ( Cos A + Sin A )²
=> M² = Cos² A + 2 Sin A Cos A + Sin² A
Since , (a+b)² = a²+2ab+b²
=> M² = ( Sin² A + Co² A) + 2 Sin A Cos A
We know that
Sin² A + Cos² A = 1
Therefore, M² = 1 + 2 Sin A Cos A
We know that
Sin 2A = 2 Sin A Cos A
M² = 1+Sin 2A -------(1)
Given that
P = Sec A + Cosec A
On squaring both sides then
=> P² = ( Sec A + Cosec A )²
=> P² = [ (1/Cos A)² + (1/SinA)²]
Since , Sec A = 1 / Cos A and
Cosec A = 1 / Sin A
=> P² = [(Sin A+ Cos A ) /(Cos A Sin A) ]²
=> P² = (Sin A+ Cos A ) ²/ (Sin A Cos A)²
=> P² = (1+2 Sin A Cos A )/(Sin²A Cos² A)
=> P² = (1+ Sin 2A ) /(Sin² A Cos² A) ----(2)
Now,
2M²-P²
= [2(1 +Sin 2A)]-[(1+Sin 2A)/(Sin²A Cos² A)]
On taking (1+Sin 2A ) as common factor
= (1+Sin 2A) [ 2- {1/Sin² A Cos² A} ]
= (1+Sin 2A) [(2 Sin² A Cos² A-1) / Sin² A Cos² A]
Now,
RHS = M²/ (2M²-P²)
= (1+Sin 2A) / [(1+Sin 2A){(2 Sin² A Cos²A - 1) / Sin² A Cos² A } ]
On cancelling (1+Sin 2A ) in both numerator and denominator then
=> 1/ [(2 Sin² A Cos² A-1) / Sin² A Cos² A ]
=> (Sin² A Cos² A) / (2 Sin² A Cos² A - 1)
On dividing both numerator and denominator with 'Sin² A' then
=> Cos² A / [2 Cos² A - (1/ Sin² A)]
=> Cos² A / (2 Cos² A- Cosec² A )
=> Cos² A / [ 2( 1- Sin² A) - Cosec² A]
Since, Sin² A + Cos² A = 1
=> Cos² A/ (2 - 2 Sin² A - Cosec² A)
Therefore,
M²/ (2M²-P²) = Cos² A/ (2 - 2 Sin² A - Cosec² A)
Hence, Proved.
Used formulae:-
→ Sin² A + Cos² A = 1
→ (a+b)² = a²+2ab+b²
→ 1/Sin A = Cosec A
→ 1/Cos A = Sec A
→ Sin 2A = 2 Sin A Cos A