Prove that cos^2 (a-B) + cos^2b - 2 cos(a - b) cos a cos B is independent of b
Answers
Answered by
2
We have to prove that sin^2 a= cos^2(a-b) + cos^2 b - 2cos(a-b)cos a.cos b
R.H.S= cos^2(a-b)-2cos(a-b)cos a.cos b+cos^2 b
=cos(a-b){cos(a-b)-2cos a.cos b} + cos^2 b
=cos(a-b){cosa.cosb+sina.sinb-2cosa.cosb} + cos^2 b
=cos(a-b){sina.sinb - cosa.cosb} + cos^2 b
= cos (b-a){-cos(a+b)} + cos^2 b. (Since cos(-A)= cosA)
= -{cos(b+a).cos(b-a)} + cos^2 b
-{cos^2 b - sin^2 a)+ cos^2b. (Since cos(a+b).cos(a-b)= cos^2 a - sin^2 b)
= -cos^2 b + sin^2 a + cos^2 b = sin^2 a=LHS
Similar questions