Math, asked by treesasruthy91, 8 months ago

Prove that cos^2 A - sin^2A = 2 cos^2 A - 1​

Answers

Answered by TakenName
1

First, we know sin²θ+cos²θ=1.

Then, we will use equality to lead the following expressions.

→ sin²θ+cos²θ=1

→ -sin²θ-cos²θ=-1

→ (2cos²θ) - sin²θ - cos²θ = (2cos²θ) - 1

→ cos²θ - sin²θ = 2cos²θ - 1 (Proved.)

Answered by Brâiñlynêha
26

Given :-

\sf cos^2A-sin^2A= 2cos^2A-1

We have to prove the give equation-

  • Identity used:-

\boxed{\sf\ sin^2A+cos^2A=1 }

Solution :-

L.H.S

:\implies\sf cos^2A-sin^2A\\ \\ \bullet\sf we \ can \ write \  sin^2A \ as [ sin^2A+cos^2=1]  \\ \\ \bullet\sf \ 1- cos^2A\\ \\ :\implies\sf cos^2A-(1-cos^2A)\\ \\ :\implies\sf cos^2A-1+cos^2A\\ \\ :\implies\sf 2cos^2A-1 \\ \\ :\implies\sf 2cos^2A-1= 2cos^2A-1\\ \\ \sf \ L.H.S= R.H.S  \ \ (hence \ proved \ ! )

\underline{\bigstar{\sf\ Other \ Trigonometric\ Identities :- }}

\underline{\bullet{\sf\ Pythagorean\ Identity :- }}

\star\sf\ \  1+tan^2A= sec^2A\\ \\ \star\sf \ \ 1+cot^2A= cosec^2A

Similar questions