prove that:
cos^2 A - sin A - 1/4 = 0
danishjibran:
Is this question complete??
Answers
Answered by
2
Solution:
cos²A-sinA-1/4 = 0
multiply each term by 4 , we get
=> 4cos²A-4sinA-1 = 0
=> 4(1-sin²A)-4sinA-1=0
/* cos²A = 1-sin²A */
=> 4-4sin²A-4sinA-1=0
=> -4sin²A-4sinA+3=0
=> 4sin²A+4sinA -3 =0
Splitting the middle term, we get
=> 4sin²A+6sinA-2sinA-3 = 0
=> 2sinA(2sinA+3)-1(2sinA+3)=0
=> (2sinA+3)(2sinA-1)=0
=> 2sinA+3 =0 or 2sinA-1 = 0
=> sinA = -3/2 or sinA = 1/2
sinA -3/2 [ it is not possible ]
Therefore,
sinA = 1/2
=> sinA = sin30°
=> A = 30°
••••
Similar questions