Math, asked by safiya63666, 11 months ago

prove that cos 20 cos 40 cos 80= 1/8

Answers

Answered by lAravindReddyl
15

Answer:-

 \mathsf{cos20.cos40.cos80 = \dfrac{1}{8 } }

Explanation:-

To Prove

cos 20° cos 40° cos80° = \dfrac{1}{8}

Proof:

Consider LHS

 \mathsf{ cos20. cos40. cos80}

On dividing and multipling with 2 Sin 20°

 \mathsf{= \dfrac{1}{2 sin20} (2 sin20. cos20. cos40. cos80)}

 \mathsf{= \dfrac{1}{2 sin20} ( sin40.cos40. cos80)}

On dividing and multiplying with 2

 \mathsf{= \dfrac{1}{4 sin20} (2 sin40.cos40. cos80)}

 \mathsf{= \dfrac{1}{4 sin20} ( sin80. cos80)}

On dividing and multiplying with 2

 \mathsf{= \dfrac{1}{8 sin20} ( 2 sin80. cos80)}

 \mathsf{= \dfrac{1}{8 sin20} ( sin 160)}

 \mathsf{= \dfrac{1}{8 sin20}[sin (180-20)]}

 \mathsf{= \dfrac{1}{8 sin20} ( sin 20)}

 \mathsf{= \dfrac{1}{8\cancel{ sin20}} ( \cancel{sin 20})}

 \bold{= \dfrac{1}{8 } }

RHS

 \bold{= \dfrac{1}{8 } }

Hence proved!

Identities used:

2 sinx cosx = sin2x

sin(180-x) = sinx

Similar questions