Math, asked by jjVharamtateleyjoh, 1 year ago

Prove that (cos 20- sin20)divided by (cos 20 + sin 20) is equal to tan25 All in degrees Please answer as soon as possible

Answers

Answered by MADHANSCTS
113
 \frac{cos 20- sin20}{cos 20 + sin 20}

 \frac{cos 20(1- \frac{sin20}{cos20}) }{cos 20(1 +  \frac{sin20}{cos20} }

\frac{cos 20(1- tan20) }{cos 20(1 + tan20) }

\frac{1- tan20 }{1 + tan20 }

since, \frac{1- tan\alpha  }{1 + tan \alpha }= tan (45 -\alpha)

\frac{1- tan20 }{1 + tan20 } = Tan(45 - 20) = Tan 25

Hence proved


MADHANSCTS: mark as brainliest
Answered by wifilethbridge
21

Answer:

Given : \frac{cos 20 - sin 20 }{cos 20 + sin 20}

To Find : \frac{cos 20 - sin 20 }{cos 20 + sin 20}=tan 25

Solution:

\frac{cos 20 - sin 20 }{cos 20 + sin 20}

Take cos 20 common

\frac{cos 20(1- \frac{sin20}{cos20}) }{cos 20(1 +  \frac{sin20}{cos20} )}

Identity : \frac{Sin x}{cos x}=tan x

\frac{cos 20(1- tan20) }{cos 20(1 + tan20) }

\frac{1- tan20 }{1 + tan20 }

since, \frac{1- tan\alpha  }{1 + tan \alpha }= tan (45 -\alpha) ---- A

Using A

\frac{1- tan20 }{1 + tan20 }  = Tan(45 - 20) = Tan 25

Hence proved .

Similar questions