Math, asked by ananyaagarwal551, 4 months ago


prove that : Cos 20° + Cos 100° + Cos 140º = 0​

Answers

Answered by kundankumar927
1

Step-by-step explanation:

cos20∘+cos100∘+cos140∘

=(cos20∘+cos140∘)+cos(90∘+10∘)

=2cos80∘cos60∘−sin10∘=cos80∘−sin10∘

=sin10∘−sin10∘=0

Answered by BawliBalika
54

Answer:

\huge\tt\underline{question}

prove that : Cos 20° + Cos 100° + Cos 140º = 0

\huge\tt\underline{answer}

Consider LHS,

 \cos20° +  \cos100° +  \cos140°

 = 2 \cos( \frac{20° + 100°}{2} ) \cos( \frac{20° - 100°}{2} ) +  \cos(140°)

 = 2 \cos60°  \cos( - 140°) +  \cos140°

 = 2 \times  \frac{1}{2}  \cos40°  +  \cos140°

 =  \cos40° +  \cos140°

 = 2 \cos( \frac{40° + 140°}{2} ) \cos( \frac{40° - 140°}{2} )

 = 2 \cos90° \cos50°

 = 0

\bf\underline\pink{hence\:LHS\:=\:RHS}


MяƖиνιѕιвʟє: Osmm
Similar questions