Prove that: cos 20° cos 40° cos 60° cos 80° =1/16
Answers
Answered by
14
SOLUTION:-
Take L.H.S
cos20°.cos40°.cos60°.cos80°
➢(cos20°.cos40°)cos60°.cos80°
➢1/2[cos20°+40°)+cos(20°-40°)]×1/2.cos80°
➢1/4[cos60°+cos(-20°)]cos80°
➢1/4[cos60°cos80° +cos20°cos80°]
➢1/4[1/2cos80° +1/2{cos(20°+80°)+cos(20°-80°)}]
➢1/8[cos80° +{cos100°+cos(-60°)}]
➢1/8[cos80° +cos100° +cos60°]
➢1/8[cos80° +cos(180°-80°)+cos60°]
➢1/8[cos80° -cos80° +cos60°]
➢1/8 × cos60°
➢1/8 × 1/2 [cos60° = 1/2]
➢1/16 = R.H.S
Therefore,
L.H.S = R.H.S = 1/16
Proved.
Hope it helps ☺️
Similar questions