Prove that cos 20° cos 40° cos 60° cos 80° = 1/16.
Answers
Answer:
Answer: It's proved that cos 20° · cos40° · cos60°. cos80° = 1/16
Explanation: We know that, cos60° = 1/2. ...
2 cosa cosb= cos(a+b) + cos(a-b) Thus, 2 cos 20°cos80° = cos(20+80)° + cos(20-80)° Substituting back to (1) we get, ...
2cosa cosb = cos(a+b) + cos(a-b) Thus, 2 cos40° cos100° = cos(40+100)° + cos(40-100)°
Step-by-step explanation:
good morning have you wonderful day ☺️
Step-by-step explanation:
Solution :
We have,
cos 20° cos 40° cos 60° cos 80°
➡ ½ cos60° cos40°(2 cos80° cos20°)
➡ ½ × ½ cos40°•{cos(80°+20°) + cos(80°-20°)}
➡ ¼ cos40°(cos100° + cos60°)
➡ ¼ cos40°(cos100° + ½)
➡ ⅛ (2cos100° cos40°) + ⅛ cos40°
➡ ⅛ [cos(100° + 40°) + cos (100° - 40°)] + ⅛ cos40°
➡ ⅛ (cos140° + cos60°) + ⅛ cos40°
➡ ⅛ cos 140° + 1/16 + ⅛ cos 40°
➡ ⅛ cos (180° - 40°) + 1/16 + ⅛ cos 40°
➡ -⅛ cos40° + 1/16 + ⅛ cos40°
➡ 1/16 = RHS.
Hence :
Proved.