Prove that cos 20° cos 40° cos 60°cos 80°=1/16
Answers
Answered by
2
Answer:
this is your answer buddy
Step-by-step explanation:
Cos20°cos40°cos60°cos80°
=(1/2)(2cos20°cos40°)(1/2)cos80° [∵,cos60°=1/2]
=(1/4)[cos(20°+40°)+cos(20°-40°)]cos80°
=(1/4)(cos60°+cos20°)cos80°
=(1/4)(cos60°cos80°+cos20°cos80°)
=(1/4)(1/2)cos80°+(1/4)cos20°cos80°
=(1/8)cos80°+(1/4)(1/2)(2cos20°cos80°)
=(1/8)cos80°+(1/8)[cos(20°+80°)+cos(20°-80°)]
=(1/8)cos80°+(1/8)(cos100°+cos60°)
=(1/8)cos80°+(1/8)cos100°+(1/8)cos60°
=(1/8)(cos80°+cos100°)+(1/8)×(1/2)
=(1/8)[{2cos(80°+100°)/2}{cos(80°-100°)/2}]+(1/16)
=(1/8)(2cos90°cos10°)+(1/16)
=0+(1/16) [cos90°=0]
=1/16 (proved)
Answered by
0
Answer:
11th science mathematics part 1
chapter Tregnometry
Attachments:
Similar questions