Math, asked by kkaur14, 3 months ago

prove that cos 20degree cos 40degree cos 80degree =1/16
tell me answer very fast ​


kkaur14: Plz tell me
kkaur14: Plz tell me answer
kkaur14: koi ta correct answer send Kar do
kkaur14: thx

Answers

Answered by fghraefuuh
0

Step-by-step explanation:

Code = 257 403 0731

Pass = HELLO

girls join me

Answered by mathdude500
1

Correct Question :-

\bf \:Prove \:  that  \: cos20° cos40° cos80° = \dfrac{1}{8}

Given :-

  • cos20° cos40° cos80°

To prove :-

  • cos20° cos40° cos80° = 1/8

Identity Used :

\bf \:❥︎ \: 2cosAcosB = cos(A+ B) + cos(A - B)

\bf \:❥︎ \: cos(180° - θ) =  - cosθ

Solution :-

\bf \:cos20° cos40° cos60°

Multiply and divide by 2, we get

\bf\implies \:\dfrac{1}{2} (2cos20° cos40° cos80°)

\bf\implies \:\dfrac{1}{2}(cos20° cos40°) cos80°

\bf\implies \:\dfrac{1}{2}(cos(20° + 40°) + cos(40° - 20°) )cos60°

\bf\implies \:\dfrac{1}{2}(cos60° + cos20°)cos80°

\bf\implies \:\dfrac{1}{2}( \dfrac{1}{2}  + cos20°)cos80°

\bf\implies \:\dfrac{1}{2}( \dfrac{1}{2} cos80° + cos80°cos20°)

Multiply and divide by 2, we get

\bf\implies \:\dfrac{1}{4}(cos80° + 2cos80°cos20°)

\bf\implies \:\dfrac{1}{4}(cos80° + cos(80° + 20°) + cos(80° - 20°))

\bf\implies \:\dfrac{1}{4}(cos80° \: +  cos 100°\:  + cos60°)

\bf\implies \:\dfrac{1}{4}(cos80° + cos(180° - 80°) + \dfrac{1}{2} )

\bf\implies \:\dfrac{1}{4}(cos80° - cos80° + \dfrac{1}{2} )

\bf\implies \:\dfrac{1}{8}

\bf\implies \:cos20° cos40° cos80° = \dfrac{1}{8}

________________________________________

Similar questions