Math, asked by TrijitAdhikary4595, 1 year ago

Prove that cos 24 . cos 48 . cos 96 . cos 168 = 1/16

Answers

Answered by FelisFelis
12

\cos 24\cdot \cos 48\cdot \cos 96\cdot \cos 192 = \frac{1}{16} Proved.

Step-by-step explanation:

Consider the provided information.

\cos 24\cdot \cos 48\cdot \cos 96\cdot \cos 192 = \frac{1}{16}

Consider the LHS.

\cos 24\cdot \cos 48\cdot \cos 96\cdot \cos 192

Divide and multiply 2 sin 24.

\dfrac{2\sin 24}{2\sin 24}(\cos 24\cdot \cos 48\cdot \cos 96\cdot \cos 192)

\dfrac{1}{2\sin 24}(2\sin 24\cos 24\cdot \cos 48\cdot \cos 96\cdot \cos 192)

Use the identity: sin 2θ=2sinθcosθ

\dfrac{1}{2\sin 24}(\sin 48\cdot \cos 48\cdot \cos 96\cdot \cos 192)

Multiply numerator and denominator by 2.

\dfrac{1}{4\sin 24}(2\sin 48\cdot \cos 48\cdot \cos 96\cdot \cos 192)

Use the identity: sin 2θ=2sinθcosθ

\dfrac{1}{4\sin 24}(\sin 96\cdot \cos 96\cdot \cos 192)

\dfrac{1}{8\sin 24}(2\sin 96\cdot \cos 96\cdot \cos 192)

\dfrac{1}{8\sin 24}(\sin 192\cdot \cos 192)

\dfrac{1}{16\sin 24}(2\sin 192\cdot \cos 192)

\dfrac{1}{16\sin 24}(\sin 384)

\dfrac{1}{16\sin 24}(\sin 360+24)

\dfrac{1}{16\sin 24}(\sin 24)

\dfrac{1}{16}

LHS=RHS

Hence, proved

#Learn more

Prove that Sin10°+Sin20°+Sin40°+Sin50°=Sin70°+Sin80°

https://brainly.in/question/1370752

Similar questions