Math, asked by milanmohan43, 1 year ago

prove that cos⁡ 2B - cos ⁡2A / sin⁡ 2A + sin ⁡2B = tan (A-B)

Answers

Answered by Neha729
8
seeeeee thissss picccc......
Attachments:
Answered by pinquancaro
6

Answer and explanation:

To prove : \frac{\cos 2B-\cos 2A}{\sin 2A+\sin 2B}=\tan(A-B)

Proof :

Taking LHS,

LHS=\frac{\cos 2B-\cos 2A}{\sin 2A+\sin 2B}

=-\frac{\cos 2A-\cos 2B}{\sin 2A+\sin 2B}

=-\frac{2\sin(\frac{2A+2B}{2})\cdot \sin(\frac{2B-2A}{2})}{2\sin(\frac{2A+2B}{2})\cdot \cos(\frac{2A-2B}{2})}

=-\frac{\sin(\frac{2B-2A}{2})}{\cos(\frac{2A-2B}{2})}

=-\frac{\sin-(\frac{2A-2B}{2})}{\cos(\frac{2A-2B}{2})}

=\frac{\sin(\frac{2A-2B}{2})}{\cos(\frac{2A-2B}{2})}

=\frac{\sin(A-B)}{\cos(A-B)}

=\tan(A-B)

=RHS

Similar questions